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Abstract

Predicting the secondary structure (α-helices,β-sheets, coils) of proteins is
an important step towards understanding their three dimensional conformations.
Unlike α-helices that are built up from one contiguous region of the polypeptide
chain,β-sheets are more complex resulting from a combination several disjoint re-
gions. The exact nature of these long distance interactions remains unclear. Here
we introduce a neural-network based method for the prediction of amino acid part-
ners in parallel as well as anti-parallelβ-sheets. The neural architecture predicts
whether two residues located at the center of two distant windows are paired or
not in aβ-sheet structure. The distance between the windows is a third essential
input into the architecture. Variations on this architecture are trained using a large
corpus of curated data. Prediction on both coupled and non-coupled residues cur-
rently exceeds 83% accuracy, well above any previously reported method. Unlike
standard secondary structure prediction methods, the use of multiple alignment
(profiles) in our case seems to degrade the performance, probably as a result of
intra-chain correlation effects.

1 Background

Predicting the secondary structure (α-helices,β-sheets, coils) of proteins is an im-
portant step towards understanding their three dimensional conformations. Unlike
α-helices that are built up from one contiguous region of the polypeptide chain,β-
sheets are built up from a combination of several disjoint regions. These regions, or
β strands are typically 5-10 residues long. In the folded protein, these strands are
aligned adjacent to each other in parallel or anti-parallel fashion. Hydrogen bonds can
form between C’O groups of one strand and NH groups on the adjacent strand and
vice versa withCα atoms successively a little above or below the plane of the sheet.
Hydrogen bonds between parallel and anti-parallel strands have distinctive patterns,
but the exact nature and behavior ofβ-sheet long-ranged interactions is not clear.

While the majority of sheets seems to consist of either parallel or antiparallel
strands, mixed sheets are not uncommon. Aβ-strand can have 1 or 2 partner strands,
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and an individual amino acid can have 0,1 or 2 hydrogen bonds with one or two
residues in a partner strand. Sometimes one or several partner-less residues are found
in a strand, giving rise to the so-calledβ-bulges. Finally,β-strand partners are often
located on a different protein chain. How amino acids located far apart in the se-
quence find one another to formβ-sheets is still poorly understood, as is the degree of
specificity between side-chain/side-chain interactions between residues on neighbor-
ing strands, which seems to be very weak [13]. The presence of a turn between strands
is also an essential ingredient.

Partly as a result of the exponentially growing amount of available 3D data, ma-
chine learning methods have in general been among the most successful in secondary
structure prediction [2]. The best existing methods for predicting protein secondary
structure, i.e. for classifying amino acids in a chain in one of the three classes, achieve
prediction accuracy in the 75-77% range [3, 4, 8]. Therefore any improvement inβ-
sheet prediction is significant as a stand-alone result, but also in relation to secondary
and tertiary structure prediction methods in general. Here we design and train a neural
network architecture for the prediction of amino acid partners inβ-sheets (see also
[7, 15]).

2 Data Preparation

2.1 Selecting the Data

As always the case in machine learning approaches, the starting point is the construc-
tion of a well-curated data set. The data set used here consists of 826 protein chains
from the PDB select list of June 1998 [5] (several chains were removed since DSSP
could not run on them). All the selected chains have less than 25% sequence identity
using the Abagyan-function [1]. The selection has been performed by applying the all
against all Huang-Miller sequence alignment using the ”sim” algorithm [6], where the
chains had been sorted according to their quality (i.e. resolution plus R-factor/20 for
X-ray and 99 for NMR).

2.2 Assigning β-sheet Partners

Theβ-sheets are assigned using Kabsch and Sander’s DSSP program [9], which spec-
ifies where the extendedβ-sheets are situated and how they are connected. This is
based on the intra-backbone H-bonds forming the sheet according to the Pauling pair-
ing rules [11]. An H-bond is assigned if the Coulomb binding energy is below�0:5
kcal/mol. In wild-type proteins there are many deviations from Paulings ideal binding
pattern, so Kabsch and Sander have implemented the following rules: aβ-sheet (’E’)
amino acid is defined when it forms two H-bonds in the sheet or is surrounded by two
H-bonds in the sheet. The minimal sheet is two amino acids long; if only one amino
acid fulfills the criteria, then it is calledβ-bridge (’B’). Bulges in sheets are also as-
signed ’E’ if they are surrounded by normal sheet residues of the same type (parallel
or anti-parallel) and comprise at most 4 and 1 residue(s) in the two backbone partner
segments, respectively.



A standard example of how the partner assignments are made is shown in figure
1. In the case ofβ-bridges the same rules are followed, while in the special case of
β-bulge residues then no partner is assigned.
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Figure 1:The assignment criteria for sheet partners are shown for two examples by the dashed
boxes. That is the A sheet segment binds to the B sheet segment with a parallel sheet and
residue A2 is the partner of B2. The other dashed box shows that B3 is the partner of C3,
even though none of them has H-bonds in the anti-parallel B-C sheet. The other sheet part-
ners in the example shown are: A3-B3, B2-C2, C2-D2 and C3-D3. Note that the residues
A1,A4,B1,B4,C1,C4,D1,C4 are not sheet residues.

3 Neural Network Architecture

A number of different artificial neural network approaches can be considered. Because
of the long-ranged interactions involved in beta-sheets, neural architectures must have
either very large input windows or distant shorter windows. Very large input windows
lead to architectures with many parameters which are potentially prone to overfitting,
especially with sparse amino acid input encoding. Overfitting, however, is not neces-
sarily the main obstacle because data is becoming abundant and techniques, such as
weight sharing, can be used to mitigate the risk. Perhaps the main obstacle associated
with large input windows is that they tend to dilute sparse information present in the
input that is really relevant for the prediction [10].

Here we have used a basic two-windows approach. Since the distance between
the windows plays a key role in the prediction, one can either provide the distance
information as a third input to the system or one can train a different architecture for
each distance type. Here, we use the first strategy with the neural network architecture
depicted in Figure 2 (see also [12]). The architecture has two input windows of length
W corresponding to two amino acid substrings in a given chain. The goal of the
architecture is to output a probability reflecting whether the two amino acids located
at the center of each window are partners or not. The sequence separation between the
windows, measured by the numberD of amino acids, is essential for the prediction and
is also given as an input unit to the architecture with scaled activityD=100. As in other
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Figure 2: Neural network architecture for amino acidβ-partner prediction.

standard secondary structure prediction architectures, we use sparse encoding for the
20 amino acids. Each input window is post-processed by a hidden layer comprising a
number NENC of hidden units. Information coming from the input windows and the
distance between the windows are combined in a fully interconnected hidden layer of
size NHY. This layer is finally connected to a single logistic output unit that estimates
the partnership probability. The architecture is trained by back-propagation on the
relative entropy between the output and target probability distributions.

4 Experiments and Results

For training, we randomly split the data 2/3 for training and 1/3 for testing purposes.
A typical split gives:

Table 1:Training set statistics, with number of sequences, amino acids, and positive and nega-
tive examples.

Training set Test set
Sequences 551 275

Amino acids 129119 64017
Positive ex. 37008 18198
Negative ex. 44,032,700 22,920,100

The number of negative examples (pairs of amino acids that are not partners) is of
course much higher. In order to have balanced training, at each epoch we present all
the 37008 positive examples, together with 37008 randomly selected negative exam-
ples at each epoch. We use a hybrid between on-line and batch training, with 50 batch



blocks, i.e. weights are updated 50 times per epoch. The training set is also shuffled
at each epoch, so the error is not decreasing monotonically. The learning rate per
block is set at 3:8�10�5 at the beginning and is progressively reduced. There is no
momentum term or weight decay. When there is no error decrease for more than 100
epochs, the learning rate is divided by 2. Training stops after 8 or more reductions,
corresponding to a learning rate that is 256 times smaller than the initial one. Typical
performances are given below for different architectural variations. The percentages
are computed on the entire test set, including all the negative examples it contains.

The results of several training experiments using different variants of the same
architecture are summarized in Table 2

Table 2: Performance results expressed in percentages of correct prediction. W=input win-
dow length, NENC=number of hidden units in the post-processing layers of each window,
NHY=number of hidden units in the output hidden layer. The second experiment with the
10/11/7 architecture involves multiple alignments (see text). Overall percentage is the simple
average of the percentage on each class.

NHY NENC W beta non-beta total
8 7 3 83.00 79.29 81.15
8 7 4 83.00 79.80 81.40
8 7 5 82.92 80.05 81.43
8 7 6 83.27 80.37 81.87
8 7 7 83.55 80.28 81.91
10 9 6 83.25 80.60 81.93
10 9 7 83.38 83.84 83.61
10 9 8 83.49 80.84 82.16
10 11 7 83.93 83.34 83.64
10 11 7 76.32 87.77 82.04
10 12 7 82.31 84.36 83.33
12 11 7 83.41 82.30 82.86

The best overall results (83.64%) are obtained with an architecture with a window
length ofW = 7 and hidden unit layers withNENC = 11 andNHY = 10. This archi-
tecture achieves similar accuracy on both partner and non-partner classes (83.93% and
83.34% respectively). It is worthwhile to notice that a small network with three hid-
den units trained using the distance between the amino acids alone as input achieves
an average performance of 75.39% (80.35% on beta-sheet partners and 70.43% on
non-partners).

It is well known that evolutionary information in the form of multiple alignments
and profiles significantly improves the accuracy of secondary structure prediction
methods. This is because the secondary structure of a family is more conserved than
the primary amino acid structure. Notice, however, that in the case of beta-sheet part-
ners, intra-sequence correlations may be essential and these are lost in a profile ap-
proach where the distributions associated with each column of a multiple alignment
are considered independent. To test these effects, we used the BLAST program with
standard default parameters (such as BLOSUM matrix 62) to create multiple align-
ments of our sequences and retrained the optimal architecture found with the corre-



sponding profiles. As can be seen in the table, the overall performance appears to
slightly degrade to 82.04%. More interestingly, however, the performance on the non-
partner class is improved (87.77 %), whereas the performance on the partner class
is degraded (76.32%). This is consistent with a selective improvement of secondary
structure prediction resulting from multiple alignments, which does not extend to beta
sheet partners as a result of important intra-sequence correlations that are lost in mul-
tiple alignments. This may imply that the actual correlation between sheet sequences
is higher than previously thought.

5 Discussion

Perfect prediction of protein secondary structures is probably impossible for a variety
of reasons including the fact that a significant fraction of proteins may not fold spon-
taneously [14], that beta-strand partners may be located on a different chain, and that
conformation may also depend on other environmental variables, related to solvent,
acidity, and so forth. It is however comforting to observe that steady progress is being
made in this area, with an increasing number of folds being solved in the structural
data bases, and steady improvement of classification and machine learning methods.
Here we have developed a neural network architecture that predicts beta-sheet amino
acid partners with a performance of almost 84% correct prediction.

There are several directions in which this work can be extended which are currently
in progress. These include:

� The development of secondary structure prediction methods for beta sheets
based on sequences rather than profiles, to be combined with the profile-based
methods which work better withα-helices and coils.

� The use of the present architecture as a beta-sheet predictor rather than a partner
predictor, possibly in combination with another neural network.

� Various combinations of the present architectures with existing secondary struc-
ture predictor to improve beta-sheet prediction performance.

� The prediction of beta-strand partners rather than amino-acid partners.

� The combination of alignments with partner prediction in order to better predict
beta-strands. In particular, a neural network could be trained to predict for each
β-strand an ideal partner strand based on amino acid pairing statistics. True
partner strands could then be searched by looking for regions in the sequence
that have high parallel or antiparallel alignment scores with the putative ideal
partner sequence.

� The use of additional information, such as amino acid properties (hydrophobic-
ity, etc.) to improve prediction accuracy.
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