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Abstract

Predicting the secondary structure (a-helices, 8-
sheets, coils) of proteins is an important step to-
wards understanding their three dimensional con-
formations. Unlike a-helices that are built up
from one contiguous region of the polypeptide
chain, B-sheets are more complex resulting from
a combination of two or more disjoint regions.
The exact nature of these long distance interac-
tions remains unclear. Here we introduce two
neural-network based methods for the prediction
of amino acid partners in parallel as well as anti-
parallel (-sheets. The neural architectures pre-
dict whether two residues located at the center
of two distant windows are paired or not in a
(-sheet structure. Variations on these architec-
ture, including also profiles and ensembles, are
trained and tested via five-fold cross validation us-
ing a large corpus of curated data. Prediction on
both coupled and non-coupled residues currently
approaches 84% accuracy, better than any previ-
ously reported method.

Introduction

Predicting the secondary structure (a-helices, 8-sheets,
coils) of proteins is an important step towards under-
standing their three dimensional conformations. Unlike
a-helices that are built up from one contiguous region
of the polypeptide chain, 3-sheets are built up from a
combination of several disjoint regions. Such regions,
or 3 strands are typically 5-10 residues long. In the
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folded protein, these strands are aligned adjacent to
each other in parallel or anti-parallel fashion. Hydro-
gen bonds can form between C’O groups of one strand
and NH groups on the adjacent strand and vice versa
with C, atoms successively a little above or below the
plane of the sheet. Hydrogen bonds between parallel
and anti-parallel strands have distinctive patterns, but
the exact nature and behavior of S-sheet long-ranged
interactions is not clear.

While the majority of sheets seems to consist of either
parallel or antiparallel strands, mixed sheets are not un-
common. A f(-strand can have 1 or 2 partner strands,
and an individual amino acid can have 0,1 or 2 hy-
drogen bonds with one or two residues in a partner
strand. Sometimes one or several partner-less residues
are found in a strand, giving rise to the so-called (-
bulges. Finally, g-strand partners are often located
on a different protein chain. How amino acids lo-
cated far apart in the sequence find one another to
form (-sheets is still poorly understood, as is the de-
gree of specificity between side-chain/side-chain inter-
actions between residues on neighboring strands, which
seems to be very weak (Wouters & Curmi, 1995). The
presence of a turn between strands is also an essential
ingredient.

Partly as a result of the exponentially growing
amount of available 3D data, machine learning methods
have in general been among the most successful in sec-
ondary structure prediction (Baldi & Brunak, 1998).
The best existing methods for predicting protein sec-
ondary structure, i.e. for classifying amino acids in
a chain in one of the three classes, achieve predic-
tion accuracy in the 75-77% range (Baldi et al., 1999;
Cuff & Barton, 1999; Jones, 1999). Not surprisingly,



(B-sheet is almost invariably the weakest category in
terms of correct percentages, and it is never the highest
scoring in terms of correlation coefficients. Therefore
any improvement in 3-sheet prediction is significant as
a stand-alone result, but also in relation to secondary
and tertiary structure prediction methods in general.
Here we design and train a neural network architec-
ture for the prediction of amino acid partners in (-
sheets (see also (Hubbard, 1994; Zhu & Braun, 1999;
Street & Mayo, 1999)).

Data Preparation
Selecting the Data

As always the case in machine learning approaches,
the starting point is the construction of a well-curated
data set. The data set used here consists of 826 pro-
tein chains from the PDB select list of June 1998
(Hobohm & Sander, 1994) (several chains were removed
since DSSP could not run on them). All the selected
chains have less than 25% sequence identity using the
Abagyan-function (Abagyan & Batalov, 1997). The se-
lection has been performed by applying the all against
all Huang-Miller sequence alignment using the ”sim” al-
gorithm (Huang & Miller, 1991), where the chains had
been sorted according to their quality (i.e. resolution
plus R-factor/20 for X-ray and 99 for NMR).

Assigning (-sheet Partners

The (-sheets are assigned using Kabsch and Sander’s
DSSP program (Kabsch & Sander, 1983), which speci-
fies where the extended (3-sheets are situated and how
they are connected. This is based on the intra-backbone
H-bonds forming the sheet according to the Pauling
pairing rules (Pauling & Corey, 1951). An H-bond is
assigned if the Coulomb binding energy is below —0.5
kcal/mol. In wildtype proteins there are many devia-
tions from Paulings ideal binding pattern, so Kabsch
and Sander have implemented the following rules: a -
sheet ("E’) amino acid is defined when it forms two H-
bonds in the sheet or is surrounded by two H-bonds in
the sheet. The minimal sheet is two amino acids long;
if only one amino acid fulfills the criteria, then it is
called -bridge (’B’). Bulges in sheets are also assigned
'E’ if they are surrounded by normal sheet residues of
the same type (parallel or anti-parallel) and comprise
at most 4 and 1 residue(s) in the two backbone partner
segments, respectively.

A standard example of how the partner assignments
are made is shown in Figure 1. In the case of S-bridges
the same rules are followed, while in the special case of
[B-bulge residues then no partner is assigned.

Statistical Analysis
First Order Statistics

The first order statistics associated with the frequency
of occurrence of each amino acid in the data in general,
and specifically within 8-sheets are displayed in Figures

2 and 3. To enhance the similarities and differences, the
ratio of the frequencies in 3-sheets over data are given
in Figure 4.

Second Order Statistics

Second order statistics are associated with pairings of
amino acids in #-sheets. The frequency of pairings can
be normalized in different ways. In each row of Figure
5, we have plotted the conditional probabilities P(XY")
of observing a X knowing that the partner is Y in a (-
sheet.

Length Distribution

Interval distances between paired (-strands, measured
in residue positions along the chain, are given in Figure
7. A small number of pairs have large distances above
200 amino acids and are not represented. Distances
could also be measured circularly but this would not
alter the fundamental features of the plot.

Artificial Neural Network Architecture

A number of different artificial neural network (ANN)
approaches can be considered. Because of the long-
ranged interactions involved in beta-sheets, neural ar-
chitectures must have either very large input windows
or distant shorter windows. Very large input windows
lead to architectures with many parameters which are
potentially prone to overfitting, especially with sparse
amino acid input encoding. Overfitting, however, is not
necessarily the main obstacle because data is becoming
abundant and techniques, such as weight sharing, can
be used to mitigate the risk. Perhaps the main obstacle
associated with large input windows is that they tend
to dilute sparse information present in the input that is
really relevant for the prediction (Lund et al., 1997).
Here we have used a basic two-windows approach.
Since the distance between the windows plays a key
role in the prediction, one can either provide the dis-
tance information as a third input to the system or
one can train a different architecture for each distance
type. Here, we use the first strategy with the neural
network architecture depicted in Figure 8 (see also (Riis
& Krogh, 1996)). The architecture has two input win-
dows of length W corresponding to two amino acid sub-
strings in a given chain. The goal of the architecture
is to output a probability reflecting whether the two
amino acids located at the center of each window are
partners or not. The sequence separation between the
windows, measured by the number D of amino acids, is
essential for the prediction and is also given as an input
unit to the architecture with scaled activity D/100. As
in other standard secondary structure prediction archi-
tectures, we use sparse encoding for the 20 amino acids.
Each input window is post-processed by a hidden layer
comprising a number NENC of hidden units. Informa-
tion coming from the input windows and the distance
between the windows are combined in a fully intercon-
nected hidden layer of size NHY. This layer is finally
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Figure 1: The assignment criteria for sheet partners are shown for two examples by the dashed boxes. That is the
A sheet segment binds to the B sheet segment with a parallel sheet and residue A2 is the partner of B2. The other
dashed box shows that B3 is the partner of C3, even though none of them has H-bonds in the anti-parallel B-C sheet.
The other sheet partners in the example shown are: A3-B3, B2-C2, C2-D2 and C3-D3. Note that residues Al, A4,
B1, B4, C1, C4, D1, D4 are not sheet residues.
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Figure 2: General amino acid frequencies in the data.
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Figure 3: Amino acid frequencies in (-sheets.
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Figure 4: Ratio of amino acid frequencies: (-sheets/data.
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Figure 5: Second order statistics P(X|Y). Conditional probability of observing an XY (or Y X) pair in a -sheet
knowing that it contains a Y residue. The sum of the entries along any row is equal to one.
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Figure 6: Second order statistics

P(X|Y).

Conditional probability of observing an XY (or Y X) pair in a 3-sheet

knowing that it contains a Y residue. Logo representation. The sum of each column is equal to one.
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Figure 7: Histogram of distances between partner -strands along protein chains, truncated to 200.

connected to a single logistic output unit that estimates
the partnership probability. The architecture is trained
by back-propagation on the relative entropy between
the output and target probability distributions.

We have also used a bi-directional recurrent neural
network architecture (BRNN), as in (Baldi et al., 1999).
This approach can be first described in terms of the
Bayesian network shown in Figure 9.

The architecture consists of an input layer where the
amino acid sequence is presented, a forward Markov
chain (as in standard Markov models of time series and
HMMs), a backward chain, and an output layer con-
sisting of all possible N2 (only one is drawn in the Fig-
ure) pairings of identical but distant windows. The out-
put variables correspond to classification into “paired”
or “non-paired” categories. Because inference in these
Bayesian networks is too slow, we replace the diagram
by a recursive neural network, using the techniques de-
scribed in detail in (Baldi et al., 1999).

Experiments and Results

For training, we randomly split the data 2/3 for training
and 1/3 for testing purposes. A typical split gives:
The raw data for our problem is extremely unbal-
anced. The number of negative examples (amino acid
pairs that are not partners) is of course much higher, by
a factor of roughly a 1,000. In order to have balanced
training, at each epoch we present all the 37008 posi-
tive examples, together with 37008 randomly selected

Table 1: Training set statistics, with number of se-
quences, amino acids, and positive and negative exam-
ples.

Training set Test set
Sequences 551 275

Amino acids 129,119 64,017
Positive ex. 37,008 18,198
Negative ex. | 44,032,700 | 22,920,100

negative examples at each epoch. In a typical case, we
use a hybrid between on-line and batch training, with
50 batch blocks, i.e. weights are updated 50 times per
epoch. The training set is also shuffled at each epoch, so
the error is not decreasing monotonically. The learning
rate per block is set at 3.8 x 107° at the beginning and
is progressively reduced. There is no momentum term
or weight decay. When there is no error decrease for
more than 100 epochs, the learning rate is divided by 2.
Training stops after 8 or more reductions, correspond-
ing to a learning rate that is 256 times smaller than
the initial one. As a general rule, when overfitting be-
gins all the systems we have trained tend to overfit the
non-f partner class. We have empirically introduced
slight variations in the training schedule as needed. We
report also the results of five-fold cross validation tests.

Typical performance results are given below for dif-
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Figure 8: Neural network architecture for amino acid S-partner prediction.

ferent architectural variations. The percentages are
computed on the entire test set, including all the nega-
tive examples it contains. The total balanced percent-
age is the average of the two percentages obtained on
the positive and negative examples. It is different from
the traditional total percentage obtained on the entire
data sets, which in this case would not be meaningful.
A trivial system that always predict a mismatch would
have a percentage of about 99.98% correct in this sense.

The results of several training experiments using dif-
ferent variants of the same feedforward neural network
architecture are summarized in Table 2. A typical net-
work has 6500 parameters.

The best overall results (83.64%) are obtained with
an architecture with a window length of W = 7 and
hidden unit layers with NENC =11 and NHY = 10.
This architecture achieves similar accuracy on both
partner and non-partner classes (83.93% and 83.34% re-
spectively). It is worthwhile to notice that a small net-
work with three hidden units trained using the distance
between the amino acids alone as input achieves an av-
erage performance of 75.39% (80.35% on [(-sheet part-
ners and 70.43% on non-partners). A five-fold cross val-
idation experiment using this architecture is reported in
Table 3 and gives a slightly lower percentage of 83.07
%.

The predicted second order statistics of the artifi-
cial neural network with the best performance are dis-
played in Figure 10. The similarity is quite good al-
though there are a few discrepancies, as in the case
of double cysteine (C-C) partners. For fairness, these
predicted statistics, as well as all the true statistics de-
scribed above, were in fact computed on the test set
only. We did check, however, that true statistics com-
pute on the entire data set are very similar which is also

Table 2: Performance results expressed in percent-
ages of correct prediction. W=input window length,
NENC=number of hidden units in the post-processing
layers of each window, NHY =number of hidden units in
the output hidden layer. The second experiment with
the 10/11/7 architecture involves multiple alignments
(see text). Overall percentage is the simple average of
the percentage on each class.

NHY | NENC | W | beta | non-beta | total
8 7 3 | 83.00 79.29 81.15
8 7 4 | 83.00 79.80 81.40
8 7 5 | 82.92 80.05 81.43
8 7 6 | 83.27 80.37 81.87
8 7 7 | 83.55 80.28 81.91
10 9 6 | 83.25 80.60 81.93
10 9 7 | 83.38 83.84 83.61
10 9 8 | 83.49 80.84 82.16
10 11 7 | 83.93 83.34 83.64
10 11 7 | 82.44 84.73 83.59
10 12 7 | 82.31 84.36 83.33
12 11 7 | 83.41 82.30 82.86

a sign that the test set is representative of the problem.

Initial experiments carried with the BRNN architec-
tures show further small but significant improvements.
A typical BRNN architecture has a smaller number of
parameters, of the order of 3500, but requires longer
training times. We varied the size of the two input win-
dows used to make the partnership assignment. Three
values were used: 7, 9, and 11. The BRNN with input
windows of length 7 yields again the best performance.
On the 1/3-2/3 set, this BRNN classifies correctly in



Figure 9: Bayesian network associated with the BRNN (see main text). Only one output node is shown. Two
windows of states in both the forward and backward Markov chains are connected to the output unit. Each Markov

chain as a unique starting state.

Table 3: Five-fold cross validation results obtained with
the optimal NN architecture above. Performance re-
sults expressed in percentages of correct prediction.
Overall percentage is the simple average of the percent-
age in each row or column.

Beta | Non-Beta | Total
82.88 86.20 84.54
81.97 84.53 83.25
82.34 84.18 83.26
80.82 83.46 82.14
81.30 83.05 82.18
Total | 81.86 84.28 83.07

kawl—‘O%
-+

84.3% of the cases, 0.7% better than the best static
NN. As above, the five-fold cross validation results for
this BRNN are slightly lower (83.54%) and given in Ta-
ble 4. For comparison, the BRNNs architectures with
amino acid windows of length 9 and 11 achieve five-
fold cross validation percentages of 83.17% and 83.14%
respectively.

Table 4: Five-fold cross validation results obtained with
a BRNN architecture. Performance results expressed in
percentages of correct prediction. Overall percentage is
the simple average of the percentage in each row or
column.

Beta | Non-Beta | Total
82.04 87.26 84.65
81.15 85.88 83.51
81.80 85.48 83.64
81.71 84.33 83.02
80.52 85.22 82.87
Total | 81.44 85.63 83.54

%MMHO%
-+

We then tested a few ensemble architectures, ob-
tained by combining the previous ones. An ensem-
ble made of the three BRNNs described above gives
a further small improvement. On the 1/3-2/3 test,
the ensemble of 3 BRNNS gives an average perfor-
mance of 84.7% (83.3% on partners, and 86.09% on
non-partners). The five-fold cross validation results for
this ensemble are given in Table 5.

Table 5: Five-fold cross validation results obtained with
an ensemble BRNN architecture, consisting of three
BRNNs. Performance results expressed in percentages
of correct prediction. Overall percentage is the simple
average of the percentage in each row or column.

Beta | Non-Beta | Total
82.01 87.04 84.52
81.62 86.36 83.99
82.24 85.81 84.03
81.82 84.55 83.18
81.05 85.18 83.12
Total | 81.75 85.79 83.77

%wMHO%
-+

Interestingly, virtually no improvement was obtained
by using ensembles of standard feedforward neural net-
works. Table 6 provides a summary of all the five-fold
cross validation results for the best architectures. Ad-
ditional experiments are in progress.

Table 6: Summary of five-fold cross validation results
for the best architectures.

Architecture Beta | Non-Neta | Total
Best ANN 81.86 84.28 83.07
Best BRNN 81.44 85.63 83.54
BRNN ensemble | 81.75 85.79 83.77
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Figure 10: Comparison of true and predicted second order statistics. Black bars represent predicted frequencies.

Empty bars represent true frequencies, as in Figure 5.

It is well known that evolutionary information in the
form of multiple alignments and profiles significantly
improves the accuracy of secondary structure prediction
methods. This is because the secondary structure of a
family is more conserved than the primary amino acid
structure. Notice, however, that in the case of beta-
sheet partners, intra-sequence correlations may be es-
sential and these are lost in a profile approach where the
distributions associated with each column of a multiple
alignment are considered independent. To start testing
these effects, we used the BLAST program (Altschul
et al., 1990) with standard default parameters to create
multiple alignments of our sequences (BLOSUM matrix
62, Expectation value (E) = 10.0, Filter query sequence
with SEG = True, Database = NR). The profile matrix
was then used as input to the artificial neural network,
instead of the sequence, in a retraining of the optimal
architecture. As can be seen in Table 2, the overall per-
formance of 83.59% is comparable, but not any better,
to the performance of the feedforward neural network
trained on sequences rather than profiles. This signif-
icant departure from what is observed in the case of
general secondary structure prediction schemes seems
to suggest that, in the case of 3-sheets there are trade-

offs associated with the type of input. Profiles may
provide more robust first order statistics, but weaker
intrasequence correlations, and vice versa for the raw
sequences. We are in the process of further testing these
tradeoffs and trying to leverage the advantages of each
approach.

Discussion

Perfect prediction of protein secondary structures is
probably impossible for a variety of reasons including
the fact that a significant fraction of proteins may not
fold spontaneously (Wright & Dyson, 1999), that (-
strand partners may be located on a different chain,
and that conformation may also depend on other en-
vironmental variables, related to solvent, acidity, and
so forth. Nevertheless it is comforting to observe that
steady progress is being made in this area, with an
increasing number of folds being solved in the struc-
tural data bases, and steady improvement of classifi-
cation and machine learning methods. Here we have
developed a neural network architecture that predicts
(B-sheet amino acid partners with a balanced perfor-
mance close to 84% correct prediction, above previously



reported results.

(B-strands are difficult to predict. Furthermore, re-
liable B-strand pairing would go a long way towards
solving the protein structure prediction problem. The
systems developed here can be viewed as a first step in
this direction since they pair amino acids rather than
strands. A balanced performance of 84% amino acid
pairing prediction is insufficient by itself to reliably pre-
dict strand pairing because of the large number of false
positive predictions in a large unbalanced data set. Our
results, however, indicate several clear directions for
future work towards improved prediction of (-strand
partners and secondary structures.

Some of these directions are being explored and in-
clude:

e The testing of the effect of multiple alignments and
profiles on the BRNNs architectures.

e The development of techniques to reduce the number
of false positive predictions. Two experiments that
need to be tried in this direction is to train similar
systems on the partner/non-partner problem but on
data extracted exclusively from beta sheets, ignor-
ing a-helical and coil regions. Another even more
restrictive possibility is to use only data associated
with (-sheets that are neighbors along the primary
sequence, and the inclusion of other categories, such
as parallel or antiparallel strands.

e The construction and training of 20 partner predic-
tion architectures, one per amino acid to try to fur-
ther improve the quality of the match in Figure 10.

e The exploration of the use of raw sequence informa-
tion, in addition to profiles, in secondary structure
prediction systems for the (-sheet class.

e The use of the present architecture as a (3-sheet pre-
dictor rather than a partner predictor, possibly in
combination with another post-processing neural net-
work.

e Various combinations of the present architectures
with existing secondary structure predictor to im-
prove (-sheet prediction performance.

e The combination of alignments with partner predic-
tion in order to better predict (-strands.

e The possible leverage of additional information, such
as amino acid properties (hydrophobicity, etc.)
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