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Abstract

Assessing and ranking the quality of a predicted model represents an
important and difficult problem in protein three-dimensional structure
prediction. To accurately address this problem, we have developed a new
machine learning based Model Quality Assessment program for protein
structure prediction. The novelty of the approach relies on the integra-
tion of informative structural features represented by 7 Gaussian integrals
(representing the curvature of the backbone) and other information rep-
resenting solvent accessibility, hydrogen bonds and predicted geometrical
constraints of the model.

Our tests indicate that the ranker can be very effective at discrimi-
nating good models from bad ones. A 5-fold cross-validation test on the
whole CASP7 dataset yields a correlation of 0.831, which is very good
in comparison to the performance of different scoring functions tested on
the server models submitted to CASP7. We also perform a test using the
CASP5 dataset as training set and the CASP7 dataset as testing set. The
correlation obtained in this case is 0.821.

1 Introduction

In protein structure prediction, a large number of models are generated for
every single query sequence in order to best search the three-dimensional con-
formational space. While this procedure improves the probability of producing
native-like structures, it requires a robust and efficient method to spot, among
all the models generated, the ones closest to the native structure. The abil-
ity of selecting the best model plays in fact a crucial role in protein structure
prediction [6]. Model Quality Assessment Programs (MQAP) are computer pro-
grams developed to rank models generated by structure prediction algorithms.
Based on the information used, they can be divided into three categories [23]:
consensus-based methods, which rely on the similarity to other models, structure-
based methods, which make use of features calculated from the three-dimensional
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model, and evolution-based methods which take advantage of the similarity be-
tween the model and a template.

Consensus based methods rank models by trying to find mutual similarities
within large ensembles of them, assuming that recurring structural patterns are
more likely to be correct than patterns occurring only in few models [23].
Structure-based methods assess the quality of a model by looking at selected
structural features of it, e.g. secondary structure[18, 17], solvent accessibility[15,
16, 11], structural motifs [12, 9], beta shee pairings [2], atomic interactions[14, 1,
22, 10, 24]. The existence of multiple domains[26] and disorder information[21,
25] may also be considered.
Evolution based methods evaluate models by comparing them to the homologous
proteins used as templates during the model generation phase.

MQAPs programs can predict the overall quality of a model or local quality.
The overall quality is an index that reflects how native-like a protein is as a
whole, e.g. its TM-score to the native structure, and rank models according
to it. This index does not account for regions predicted incorrectly, which are
instead investigated by local quality measures and might be used to drive the
reconstruction.

Here we present a new machine learning based Model Quality Assessment
Program for protein structure prediction. The novelty of the approach relies
on the integration of informative structural features embodied in 7 Gaussian
Integrals (representing the curvature of the backbone) and other information
representing solvent accessibility, hydrogen bonds and predicted geometrical
constraints of the model. Our tests indicate that the ranker can be very effective
at discriminating good models from bad ones.

The ranker included 27 features and was used in CASP8 as part of the
Quality Measure used to rank our models and as a predictor in the Quality
Assessment (QA) category.

2 Approach

The main disadvantage of using simplified representations (e.g Cα-only) for pro-
tein structures is the difficulty to derive a meaningful energy model to rank the
structures generated. We try to overcome this problem by relying on geomet-
rical constraints to discern native-like protein conformations from unfolded, or
incorrectly folded ones. Often the pseudo-energy functions used in reconstruc-
tion methods to guide the search phase output numerical scores that do not
accurately describe the quality of models, especially when the reconstructor is
based on protein features that are predicted with a low accuracy (e.g. when
relying on ab initio residue contact map predictions). This happens because
the pseudo-function tries to encode constraints that are not real, ending up in
a model whose three-dimensional structure is far from the native one. To solve
this problem and correctly rank the models generated and to (ideally) select
the best one, we implemented a new neural network ranker. The idea is to take
a snapshot of the final model, by means of a vector of geometrical descriptors,
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and to feed it to a neural network that will output an estimation of the model
quality. The quality assessment is thus modelled as a regression problem solved
by Machine Learning techniques.
A multi-layered feed-forward neural network is trained to map the set of input
features, describing geometrical characteristics of the backbone, onto a numer-
ical score between 0 and 1 (sigmoidal output neuron; the higher the score, the
better the quality). In the training phase the exact score (target) is known
because the native structure is known. Here we choose to adopt as target the
TM-score, a scoring function which has no bias with respect to the target pro-
tein length and all the residues of the modelled proteins. For training, we use
the classical back-propagation algorithm to minimise the sum of squared errors
between the predicted output and the correct pseudo-energy value.

We chose a structure-based method over the consensus and evolution based
ones because the number of structures generated in our reconstructing pipeline
is not large enough to allow clustering of correct patterns over non-correct ones
(which underpins consensus-based methods) and because we do not always have
a template for comparison. What we need is an overall quality index that reflects
how native-like a protein is, (e.g. that evaluates its TM-score) and ranks it
according to such index.

3 Methods

A number of features in the input vector come from the one- and two-dimensional
features predicted by the suite of predictors included in the pipeline of our
method to model protein structures [4] (see Figure 1). The other features are
derived from geometrical characteristics of the decoys. In this section a detailed
description of the different features used to describe a model will be given (in
parenthesis the number of features).

The 27 features used in our ranker as a set of descriptors for protein struc-
tures are:

• Contact density (4)[22]

• Distance between the contact map of the structure and a predicted one
(5)

• Mutual sums (4)

• Relative position of Secondary Structure Elements(SSEs) (3)

• Half-Sphere Exposure (2)

• Non-local hydrogen bonds and hydrophobic contacts (2)

• Selected Gauss integrals (7) (I(1,2), I(1,2)(3,4), I(1,2)(3,4)(5,6), I(1,2)(3,5)(4,6),
I(1,2)(3,6)(4,5), I(1,4)(2,3)(5,6), I(1,6)(2,3)(4,5))
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Figure 1: NNetwork: quality assessment is modelled as a regression problem
solved by Machine Learning techniques. A multi-layered feed-forward neural
network is trained to map the set of input features, describing geometrical char-
acteristics of the backbone, onto a Quality Measure score (QM) between 0 and 1
(sigmoidal output neuron; the higher the score, the better the quality). Here we
choose to adopt the TM-score, a scoring function which has no bias with respect
to the target protein length. For training, we use the classical back-propagation
algorithm to minimise the sum of squared errors between the predicted output
and the correct pseudo-energy value.

Contact density. The number of an amino acid’s neighbouring amino acids
defines the degree of solvent exposure for it. Amino acids buried in the core of
a globular protein, e.g., will be surrounded by a large number of other amino
acids (neighbours), while amino acids staying at the interface with the solvent,
will have a smaller number of residues around them. This number, or contact
density, defines the solvent exposure for each amino acid in the protein [7]. We
define the contact density in 4-classes as the Principal Eigenvector (PE) of a
protein’s residue contact map at 8 Å, multiplied by the principal eigenvalue [22].
The first class represents the least solvent exposed residues and the last class the
most exposed ones. Each class, normalised by protein size, represent a feature.

Distance between the contact map of the structure and a predicted
one. The 4-class contact map corresponding to a model is compared to the
predicted one for that protein. The accuracy for each class, together with the
total accuracy is then measured as the number of mismatches between the two
maps (i.e. if the maps are identical, all the accuracies are equal to 1). In this
way, 5 features are generated.

Mutual sums. These 4 features are the relative contact distribution of
the four distance classes (in Å) (3.8, 5.5], (5.5, 7.5], (7.5, 11] and (11, 13]. The
thresholds have been derived from the mutual distance distribution of the Cα
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atoms in our models. For every pair of Cα atoms, their mutual distance is
calculated and the corresponding bin counter incremented. The four counters
are then normalised by the total number of distances in the range (3.8, 13] Å
and returned as features.

Relative position of Secondary Structure Elements (SSEs). The
overall three-dimensional arrangement of a protein is defined by how its SSEs
fold together. This means that the relative orientation of secondary structure
elements is a measure of how correctly or incorrectly a protein folded. It is thus
justified to take into consideration how SSEs are placed in the three-dimensional
structure and in relation to each other.

For all the SSEs at least four amino acids long, the mutual distance is cal-
culated between the middle amino acid, the previous amino acid and the next
one (see Algorithm 1). If one of the three mutual distances is less then 12 Å
the cosine of the angle between the involved SSEs is calculated as in Equation 1
and normalised between 0 and 1. For every type of SSE pairing (i.e. helix/helix,
strand/strand, others), the total angle normalised by the total number of pair-
ings for that angle is calculated and returned as a feature.

v1 =
~a1 · ~a2
|~a1||~a2|

(1)

Half-Sphere Exposure. Solvent exposure is an index measuring how ex-
posed to the solvent an amino acid is. In globular proteins the difference in
solvent exposure between residues at the surface and residues buried in the core
of the protein is relevant. Solvent exposure can thus be interpreted as an index
of protein globularity. Since most of the proteins carrying out biochemical re-
actions are globular, it is straightforward that solvent exposure is an important
descriptor for this type of molecules.

A new measure of solvent exposure, the half-sphere exposure (HSE), has
been defined as the number of Cα atoms in two half spheres around a residue’s
Cα atom. The two half spheres are defined by a plane that is perpendicular to
the Cα − Cβ (or pseudo Cβ) vector and runs through the residue’s Cα atom [7].
The HSE takes into account four different degrees of exposure, distinguishing
between exposed, partly exposed, buried and deeply buried residues [7]. For
this reason we preferred this measure of solvent exposure over traditional ones.
Below is the description of how these two features (upper and lower semisphere)
are calculated.

For each Cαj,j 6=i ∈ MODEL (see Algorithm 2), where MODEL is the set of
Cα coordinates, and i is the center of the sphere, the vector ~v = Cαi − Cαj

and the scalar product ~v · ~b are calculated, where ~b is the binormal (vector
perpendicular to the plane cutting the sphere centered in i in a upper and a
lower emisphere).The total number of residues in the upper emisphere and in
the lower emisphere (both normalised by the size of the model) are returned.

Non-local hydrogen bonds and hydrophobic contacts. Hydrogen
bonds are vital to maintain proteins in a folded state. The Energy difference
between folded and unfolded proteins, in fact, is not high enough to disallow the
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(theoretical) existence of unfolded states. A protein’s conformation is largely
stabilized by weak interactions like hydrogen bonds and hydrophobic interac-
tions [13].

We define non-local hydrogen bonds as non-covalent interactions between
the carbonyl group of the residue in position i and the the amide group of the
residue in position i+ j, with j > i+ 4, and at a distance between 4.1 and 6.5
Å. In this case, if the distance is between 6.5 and 7.5 Å the interaction involved
is accounted as an hydrophobic contact.
Each residue is constrained to form no more than two hydrogen bonds. More-
over, the binormal between the atoms involved in the bond must be within
(-0.77,0.77) radians. These limitations are required because the strength of
hydrogen bonds depends, among other factors, on the distance between the
participating atoms, the number of bond atoms that are involved in the bond
and their relative orientation (a relative angle of 0 degrees generates a strong
bond) [13]. In our models, most of the interactions calculated as described
above involve amino acids involved in α-helices. For this reason, and because
α-helices are constrained to be right-handed, we enforce amino acids involved
in non-covalent bonds to have a positive chirality [8]. We define chirality as the
sign of (~ri,i+1 × ~ri+1,i+2) · ~ri+2,i+3.

Gauss integrals. The last 7 features are the most interesting ones and
what differentiates this ranker from most of the other MQAPs. The novelty of
the approach relies on the integration of informative structural features repre-
sented by 7 Gauss integrals. Since it is very hard, if not impossible, to derive a
meaningful energy function able to accurately describe the goodness of a model
represented only as a sequence of identical beads (the Cα), we decided to de-
rive a quality measure from the geometric description of the shape of a protein.
To achieve such goal, the use protein shape descriptors independent of transla-
tion and rotation that are able to distinguish among similar, but still different,
morphologies is crucial. From this point of view, generalized Gauss integrals
are an ideal choice [19]. Generalized Gauss integrals arise from Vassiliev knot
invariants [3] and are based on crossings seen in planar projections of curves rep-
resenting a protein (e.g. the planar projections of the Cα-traces). The crossings
have a sign defined by the right-hand rule [20] (see Figure 2). The generalized
Gauss integrals used here are based on the first-order Gauss integrals writhe
and average crossing number.

The writhe is the total number of positive crossings minus the total number
of negative crossings. Its natural definition for a polygonal space curve µ is

I(1,2)(µ) = Wr(µ) =
∑

0<i1<i2<N

W (i1, i2) (2)

where W (i1, i2) is the probability of seeing the i1 and ith2 segments cross
when averaged over all directions in space multiplied by the sign of the crossing
[19].

The average crossing number of a curve is the unsigned average number of
crossings seen in the different planar projections of the curve and is defined by
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Figure 2: Example of inter-crossing curves.

I|1,2|(µ) =
∑

0<i1<i2<N

|W (i1, i2)| (3)

All the other second- and third-order Gauss integrals are derived from the
writhe and the average crossing number [20].

4 Discussion

5 Dataset

The protein data set used to train and validate the ranker consists of a non
redundant set of 258 protein structures (S258) showing no homology to the se-
quences employed to train the underlying predictive systems. This set includes
proteins of moderate size (51 to 200 amino acids) and diverse topology as classi-
fied by SCOP (Structural Classification of Proteins database) (all-α, all-β, α/β,
α+β, surface, coiled-coil and small). For each protein in the dataset, we have
generated 75 decoys of different quality, so that to have a balanced distribution
of TM-score values (see Figure 3). The training set was composed of 19594
decoys and the validation set by 8355.

To test its applicability as an MQAP, the ranker was trained on the server
models submitted to CASP5, while the server models submitted to CASP7
were used as test set (see Table 2). On the latter dataset, a k-fold (k=5) cross-
validation test was then performed.

After preliminary experiments, training of the multi-layered feed-forward
neural network has been carried out using a number of input units corresponding
to the number of features.Each unit in one layer has directed connections to
the units of the subsequent layer. For training, the classical back-propagation
algorithm to minimise the sum of squared errors between the predicted output
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Algorithm 1 SSE

Require: SSE, the set of Secondary Structure Elements of at least 4 amino
acids.

1: for all ssei,j ∈ SSE do
2: MID AA(ssei,j) = (AAlast

ssei,j −AA
first
ssei,j )/2

3: Cαi,j
mid ← MID AA(ssei,j)

4: for all Cαi,j
mid do

5: d1 = distance(Cαi,j
mid)

6: d2 = distance(Cαi−1,j−1
mid )

7: d3 = distance(Cαi+1,j+1
mid )

8: if d1 or d2 or d3 < 12 then
9: if ssei,j are helices then

10: Hcount++
11: Hrot ← ANGLE(Cαi,j

mid)
12: else if ssei,j are strands then
13: Ecount++
14: Erot ← ANGLE(Cαi,j

mid)
15: else
16: Ccount++
17: Crot ← ANGLE(Cαi,j

mid)
18: end if
19: end if
20: end for
21: end for
22: return (Hrot/Hcount++, Erot/Ecount++ Crot/Ccount++)

Algorithm 2 HSE

1: for all Cαi ∈ MODEL do
2: d = DEFINE SIGN(Cαi);
3: for all Cαj,j 6=i ∈ MODEL do
4: dist = distance(Cαi,j);
5: if dist < 12 and d >= 0 then
6: uprel++;
7: upside++;
8: else if dist < 12 and d < 0 then
9: drel++;

10: downside++;
11: end if
12: upcount += uprel/size;
13: downcount += drel/size;
14: end for
15: end for
16: return (upcount, downcount)
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Figure 3: Training set TM-score distribution of the training set.

(modelled via a sigmoidal output neuron) and the correct pseudo-energy value
was used. Since we are training the network to map the input vector onto a
global quality measure index (i.e. the TM-score), the output unit is one. Both
the momentum and the learning rate were set to 10−3 for all the experiments,
while the number of hidden units and epochs vary for the different experiments
and is reported in the tables below along with the correlation between the true
TM-score and the predicted one calculated on the training and test sets. Here
the correlation measures how accurately the predicted TM-score approaches the
true one, as is defined as:

corr(x, y) =
Cov(x, y)

σ(x)σ(y)
(4)

where x is the true TM-score, y the predicted one, Cov is the covariance of
x and y (i.e. the measure of how much x and y change together), and σ the
standard deviation. A correlation of 1 means that the predicted and the true
TM-score value are identical across the set considered.

Correlations calculated for the the ranker on the S258 dataset (for both
training and validation sets) are graphically reported in Figure 4. An ideal
ranker with correlation 1 would produce a plot with all the points lying on
the diagonal (i.e. same value for predicted and true TM-score). Thus the
more “diagonal-like” a plot is, the more native-like the predicted TM-scores
are. Keeping this consideration in mind, the good performance of our ranker is
easily noticed by looking at these plots.

The ranker was trained on the server models submitted to CASP5 to test
its applicability as an MQAP (see Table 2).
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Corr on Corr on Hidden Epochs Learning
training set validation set units rate

0.945 0.930 5 30000 10−3

Table 1: Correlation values for the ranker trained and tested on two different
subsets of models generated from the S258 dataset.

Corr on Corr on Hidden Epochs Learning
training set test set units rate

0.926 0.821 3 10000 10−3

Table 2: Correlation values for the ranker trained on the server models sub-
mitted to CASP5. The ranker was then tested tested on the server models
submitted to CASP7.

Method Correlation

Our Ranker 0.850
QMEAN5 -0.720
Modcheck 0.640
SSE PSIRED -0.650

Table 3: Comparison between correlation values for different scoring function
in predicting the quality of server models submitted to CASP7

We then performed a k-fold (k=5) cross-validation test on the server models
submitted to CASP7. The correlation on this set was 0.831, which is very good
in comparison to the performance of different scoring functions tested on the
server models submitted to CASP7 [5] (see Table 3).

The average TM-score for CASP7 models ranked as first (i.e. for each target,
the model to which the ranker assigned the best score) by the ranker was 0.471.

In table 4 the ranker correlations on CASP7 dataset are reported together
with the correlation obtained training the network on models generated from
our pipeline for CASP7 targets. The latter is part of our current reconstructing
pipeline and is participating in the CASP8 MQAP category.

6 Conclusion

We have presented a new machine learning based Model Quality Assessment
Program for protein structure prediction. The novelty of the approach relies
on the integration of informative structural features represented by 7 Gaussian
Integrals (representing the curvature of the backbone) and other information
representing solvent accessibility, hydrogen bonds and predicted geometrical
constraints of the model. Our tests indicate that the ranker can be very effective
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k-fold Hidden Epochs Learning
test Corr units rate

0.831 3 30000 10−3

Our CASP7
models

0.853 5 50000 10−3

Table 4: Correlation value for the k-fold (k=5) cross-validation test on server
models submitted to CASP7. The last line in the Table is the correlation ob-
tained training the network on models generated from our pipeline for CASP7
targets. The latter is part of our current reconstructing pipeline and is partici-
pating in CASP8 MQAP category

Figure 4: Predicted TM-score value versus true one for the 27 feature ranker
using two different subset of the S258 dataset as training set (top) and as vali-
dation set (bottom).

at discriminating good models from bad ones.
The protein data set used to train and validate the ranker consisted of a

non redundant set of 258 protein structures (S258) showing no homology to the
sequences employed to train the underlying predictive systems. The correlation
on this set was 0.945 (training set) and 0.930 (validation set).

The ranker was then tested on the server models submitted to CASP7. We
first used the server models submitted to CASP5 as training set and those
submitted to CASP7 as test set. The correlation on this set was 0.821. We then
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performed a k-fold (k=5) cross-validation test on the server models submitted to
CASP7. The correlation on this set was 0.831, which is very good in comparison
to the performance of different scoring functions tested on the server models
submitted to CASP7 (see Table 3).

The average TM-score for CASP7 models ranked as first (i.e. for each target,
the model to which the ranker assigned the best score) by the ranker was 0.471.

Although this is a preliminary study, we plan on revisiting and expanding
this research on newer, larger sets, including the CASP8 and CASP9 datasets.
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